

On the numerical index of vector-valued function spaces

ELMOULOUDI ED-DARI*†, MOHAMED AMINE KHAMSI‡, and ASUMAN GÜVEN AKSOY§

†Faculté des Sciences Jean Perrin, Université d'Artois, SP 18, 62307-Lens Cedex, France ‡Department of Mathematical Sciences, University of Texas at El Paso, 500 West University, Ave. El Paso, Texas 79968-0514, USA §Department of Mathematics, Claremont McKenna College, Claremont, CA 91711, USA

Communicated by W. Watkins

(Received in final form 13 December 2006)

Let X be a Banach space and μ a positive measure. In this article, we show that $n(L_p(\mu, X)) = \lim_n n(l_p^m(X)), 1 \le p < \infty$. Also, we investigate the positivity of the numerical index of l_p -spaces.

Keywords: Numerical index; Numerical radius

Mathematics Subject Classification (2000): 47A12

1. Introduction

Let X be a Banach space over \mathbb{R} or \mathbb{C} , we write B_X for the closed unit ball and S_X for the unit sphere of X. The dual space is denoted by X^* and the Banach algebra of all continuous linear operators on X is denoted by B(X). The *numerical range* of $T \in B(X)$ is defined by

$$V(T) = \{x^*(Tx): x \in S_X, x^* \in S_{X^*}, x^*(x) = 1\}.$$

The *numerical radius* of T is then given by

$$v(T) = \sup\{|\lambda|: \lambda \in V(T)\}$$

^{*}Corresponding author. Email: Elmouloudi.Eddari@euler.univ-artois.fr

Clearly, v is a semi norm on B(X) and $v(T) \le ||T||$ for all $T \in B(X)$. The numerical index of X is defined by

$$n(X) = \inf\{v(T): T \in S_{B(X)}\}.$$

The concept of numerical index was first suggested by Lumer [7] in 1968. Since then a lot of attention has been paid to this constant of equivalence between the numerical radius and the usual norm in the Banach algebra of all bounded linear operators of a Banach space. Classical references here are [1,2]. For recent results, we refer the reader to [3,5,6,8,10].

In this article, we show that for any positive measure μ and Banach space X, the numerical index of $L_p(\mu, X)$, $1 \le p < \infty$ is the limit of the sequence of numerical index of $l_p^m(X)$. This gives a partial answer to Martín's question [9] and generalizes the result obtained for the scalar case [5]. We also study the positivity of the numerical index of l_p -space.

Here, $L_p(\mu, X)$ is the classical Banach space of p-integrable functions f from Ω into X where (Ω, Σ, μ) is a given measure space. And $l_p(X)$ is the Banach space of sequences $x = (x_n)_{n \ge 1}, x_n \in X$, such that $\sum_{n=1}^{\infty} \|x_n\|^p < \infty$. Finally $l_p^m(X)$ is the Banach space of finite sequences $x = (x_n)_{1 \le n \le m}, x_n \in X$, equipped with the norm $\|x\|_p = (\sum_{n=1}^m \|x_n\|^p)^{1/p}$.

2. Main results

Theorem 2.1 Let X be a Banach space. Then, for every real number $p, 1 \le p < \infty$, the numerical index of the Banach space $l_p(X)$ is given by

$$n(l_p(X)) = \lim_m n(l_p^m(X)).$$

Proof Let $m \ge 1$ and $T: l_p^m(X) \to l_p^m(X) \ x \mapsto (T_1(x), \ldots, T_m(x))$. Define the linear operator $\tilde{T}: l_p(X) \to l_p(X)$ as follows for $x = (x_1, \ldots, x_m, x_{m+1}, \ldots) \in l_p(X)$, $\tilde{T}(x) = (T_1(x_1, \ldots, x_m), \ldots, T_m(x_1, \ldots, x_m), 0, \ldots)$. Clearly, \tilde{T} is bounded and $\|T\| = \|\tilde{T}\|$. We have also $v(T) = v(\tilde{T})$. To prove this, let us first note that if $x = (x_1, \ldots, x_m, \ldots) \in S_{l_p(X)}$, then there exists an element, namely x_x^* , in $S_{l_q(X^*)}$, where q is the conjugate exponent to p, such that $x_x^*(x) = 1$. Explicitly $x_x^* = (\|x_1\|^{p-1}x_1^*, \ldots, \|x_m\|^{p-1}x_m^*, \ldots)$ where the x_k^* 's are taken in S_{X^*} such that $x_k^*(x_k) = \|x_k\|$. Now, let $\varepsilon > 0$. Following the expression $v(\tilde{T}) = \sup\{|x_x^*(\tilde{T}x)| : x \in S_{l_p(X)}\}$ ([4], Lemma 3.2 and Proposition 1.1) there exists $x = (x_1, \ldots, x_m, x_{m+1}, \ldots) \in S_{l_p(X)}$ such that

$$v(\tilde{T}) - \varepsilon < |x_x^*(\tilde{T}x)|$$

= $|(\|x_1\|^{p-1}x_1^*, \dots, \|x_m\|^{p-1}x_m^*)(T(x_1, \dots, x_m))|.$

Put $r := (\sum_{k=1}^m \|x_k\|^p)^{1/p} \le 1$. Then we obtain $v(\tilde{T}) - \varepsilon < r^p v(T)$ which yields $v(\tilde{T}) \le v(T)$. The reverse inequality is easy. Therefore

$$\left\{v(T): \ T \in l_p^m(X), \|T\| = 1\right\} \subset \left\{v(U): \ U \in l_p(X), \|U\| = 1\right\}$$

which yields $n(l_p(X)) \le n(l_p^m(X))$. Consequently $n(l_p(X)) \le \liminf_m n(l_p^m(X))$. Now we shall prove that $\limsup_m n(l_p^m(X)) \le n(l_p(X))$. Let $T \in B(l_p(X))$. Define the sequence of operators $\{S_m\}_m$ as follows; for each $m \ge 1$, S_m is defined on $l_p^m(X)$ by

$$S_m(x) = (T_1(x_1, \dots, x_m, 0, 0, \dots), \dots, T_m(x_1, \dots, x_m, 0, 0, \dots)) \quad (x \in l_p^m(X)).$$

Clearly, the S_m 's are bounded and $||S_m|| \le ||T||$ for all m. We claim that

- (i) $||S_m|| \rightarrow ||T||$
- (ii) $v(S_m) \rightarrow v(T)$.

Indeed, we consider the sequence of operators $\{\tilde{S}_m\}_m$ defined on $l_p(X)$ by

$$\tilde{S}_m(x) = (T_1(x_1, \dots, x_m, 0, 0, \dots), \dots, T_m(x_1, \dots, x_m, 0, 0, \dots), 0, 0, \dots)$$

for all $x = (x_1, \ldots, x_m, x_{m+1}, \ldots) \in l_p(X)$. It is easy to see that $||S_m|| = ||\tilde{S}_m||$, and \tilde{S}_m converges strongly to T. This implies that $||T|| \le \liminf_m ||\tilde{S}_m||$, and it follows that $||S_m|| \to ||T||$. As in (i) we have also $v(S_m) = v(\tilde{S}_m)$, so it is enough to prove that $v(\tilde{S}_m) \to v(T)$. Let $\varepsilon > 0$ and fix $u \in S_X$, $u^* \in S_{X^*}$ such that $u^*(u) = 1$. There exists $x \in S_{l_p(X)}$ such that

$$\left| x_{v}^{*}(Tx) \right| > v(T) - \varepsilon$$
 (1)

For each $n \ge 1$, consider

$$x^{n} = (x_{1}, \dots, x_{n-1}, \lambda_{n}u, 0, 0, \dots); \quad x^{*}_{x^{n}} = (\|x_{1}\|^{p-1}x^{*}_{x_{1}}, \dots, \|x_{n-1}\|^{p-1}x^{*}_{x_{n-1}}, \lambda_{n}^{p-1}u^{*}, 0, 0, \dots)$$

where $\lambda_n = \left(\sum_{k=n}^{\infty} \|x_k\|^p\right)^{1/p}$. Then

$$x_{y^n}^*(x^n) = 1 = ||x_{y^n}^*|| = ||x^n||$$

Moreover, $\|x - x^n\| \to 0$ and $\|x_x^* - x_{x^n}^*\| \to 0$ where $x_x^* = (\|x_1\|^{p-1}x_{x_1}^*, \dots, \|x_n\|^{p-1}x_{x_n}^*, \dots)$. It follows that $x_{x^n}^*(Tx^n) \to x_x^*(Tx)$ as n tends to infinity. Let $n_0 \ge 1$ be such that

$$|x_{x^n}^*(Tx^n)| > v(T) - \varepsilon \quad (n \ge n_0). \tag{2}$$

Since \tilde{S}_m converges strongly to T, thus for fixed $n \ge n_0$, $x_{x^n}^*(\tilde{S}_m x^n)$ converges to $x_{x^n}^*(Tx^n)$ as m tends to infinity. So there is $m_0 \ge n$ such that

$$|x_{\chi^n}^*(\tilde{S}_m x^n)| > v(T) - \varepsilon \quad (m \ge m_0). \tag{3}$$

This yields $v(\tilde{S}_m) > v(T) - \varepsilon$ for all $m \ge m_0$ and therefore $v(\tilde{S}_m)$ converges to v(T) as m tends to infinity. Now, following (i) and (ii) we have $n(l_p(X)) \ge \limsup_m n(l_p^m(X))$. Indeed, for a given $\varepsilon > 0$, we find $T \in S_{B(l_n(X))}$ such that

$$n(l_p(X)) + \varepsilon > v(T)$$

Since $v(T) = \lim_{m} v(\tilde{S}_m)$, there exists m_0 such that

$$n(l_p(X)) + \varepsilon > v(\tilde{S}_m) \quad (m \ge m_0)$$

But $v(\tilde{S}_m) = v(S_m) \ge n(l_p^m(X)) \|S_m\|$, and $\|S_m\| \to \|T\| = 1$, so there exists $k_0 \ge m_0$ such that

$$n(l_p(X)) + \varepsilon > n(l_p^m(X))(1 - \varepsilon) \quad (m \ge k_0)$$

This implies $n(l_p(X)) \ge \limsup_m n(l_p^m(X))$ and completes the proof of Theorem 2.1.

It is well known that $n(\bigoplus_{\lambda} X_{\lambda})_{l_{\infty}} = \inf_{\lambda \in \Lambda} n(X_{\lambda})$ [9]. This shows that, in particular, $n(l_{\infty}(X)) = n(X)$ (= $\lim_{m} n(l_{\infty}^{m}(X))$). So, Theorem 2.1 is also valid for $p = \infty$.

THEOREM 2.2 Let (Ω, Σ, μ) be a σ -finite measure space. Then, for every Banach space X and every real number $p, 1 \le p < \infty$,

$$n(L_p(\mu, X)) = n(l_p(X)).$$

Proof Let us first prove that $n(L_p(\mu,X)) \leq n(l_p(X))$. For this we adapt the proof due to Javier and Martin for the scalar case (unpublished result). Indeed, if μ is not atomic, $L_p(\mu,X)$ is isometric to $L_p(\mu,X) \oplus_p L_p(\mu,X)$, so they have the same numerical index. Let $T=(T_1,T_2)\in B(l_p^2(X))$ and define the operator S on $L_p(\mu,X)\oplus_p L_p(\mu,X)$ by $S(f_1,f_2)(\omega)=T(f_1(\omega),f_2(\omega))$. One can check easily that $\|T\|=\|S\|$. Moreover, v(T)=v(S). Indeed, let $f_1=\sum_{i=1}^m x_i(1_{A_i}/\mu(A_i)^{1/p}), f_2=\sum_{i=1}^n y_i(1_{B_i}/\mu(B_i)^{1/p})$ be simple functions in $L_p(\mu,X)$ with $\|(f_1,f_2)\|^p=\sum_{i=1}^m \|x_i\|^p+\sum_{i=1}^n \|y_i\|^p=1$. For each i we can find x_i^* and y_i^* in S_{X^*} such that $x_i^*(x_i)=\|x_i\|$ and $y_i^*(y_i)=\|y_i\|$. If we set $g_1=\sum_{i=1}^m \|x_i\|^{p-1}x_i^*(1_{A_i}/\mu(A_i)^{1/q})$ and $g_2=\sum_{i=1}^n \|y_i\|^{p-1}y_i^*(1_{B_i}/\mu(B_i)^{1/q})$, we have clearly $(g_1,g_2)\in S_{L_q(\mu,X^*)\oplus_q L_q(\mu,X^*)}$ and $<(g_1,g_2),(f_1,f_2)>=1$. Moreover,

$$|(g_1, g_2)(S(f_1, f_2))| \le \int_{\Omega} |(g_1(\omega), g_2(\omega))(T(f_1(\omega), f_2(\omega)))| d\mu(\omega)$$

$$\le v(T) \int_{\Omega} ||f_1(\omega)||^p + ||f_2(\omega)||^p d\mu(\omega) = v(T).$$

Following [4], we have $v(S) \leq v(T)$. For the reverse inequality, let $(x_1, x_2) \in S_{l_p^2(X)}$. Take $A \in \Sigma$ with $\mu(A) > 0$ and consider $(f_1, f_2) = (x_1(1_A/\mu(A)^{1/p}), x_2(1_A/\mu(A)^{1/p}))$. From what we have just seen $(g_1, g_2) = (\|x_1\|^{p-1}x_1^*(1_A/\mu(A)^{1/q}), \|x_2\|^{p-1}x_2^*(1_A/\mu(A)^{1/q})) \in S_{L_q(\mu, X^*) \oplus_q L_q(\mu, X^*)}$ and $(g_1, g_2), (f_1, f_2) >= 1$. Moreover,

$$\left| (\|x_1\|^{p-1}x_1^*, \|x_2\|^{p-1}x_2^*)(T(x_1, x_2)) \right| = \left| \int_{\Omega} (g_1(\omega), g_2(\omega))S(f_1, f_2)(\omega) d\mu(\omega) \right| \le v(S) \cdot \frac{1}{2} \left| \int_{\Omega} (g_1(\omega), g_2(\omega))S(f_1, f_2)(\omega) d\mu(\omega) \right| \le v(S) \cdot \frac{1}{2} \left| \int_{\Omega} (g_1(\omega), g_2(\omega))S(f_1, f_2)(\omega) d\mu(\omega) \right| \le v(S) \cdot \frac{1}{2} \left| \int_{\Omega} (g_1(\omega), g_2(\omega))S(f_1, f_2)(\omega) d\mu(\omega) \right| \le v(S) \cdot \frac{1}{2} \left| \int_{\Omega} (g_1(\omega), g_2(\omega))S(f_1, f_2)(\omega) d\mu(\omega) \right| \le v(S) \cdot \frac{1}{2} \left| \int_{\Omega} (g_1(\omega), g_2(\omega))S(f_1, f_2)(\omega) d\mu(\omega) \right| \le v(S) \cdot \frac{1}{2} \left| \int_{\Omega} (g_1(\omega), g_2(\omega))S(f_1, f_2)(\omega) d\mu(\omega) \right| \le v(S) \cdot \frac{1}{2} \left| \int_{\Omega} (g_1(\omega), g_2(\omega))S(f_1, f_2)(\omega) d\mu(\omega) \right| \le v(S) \cdot \frac{1}{2} \left| \int_{\Omega} (g_1(\omega), g_2(\omega))S(f_1, f_2)(\omega) d\mu(\omega) \right| \le v(S) \cdot \frac{1}{2} \left| \int_{\Omega} (g_1(\omega), g_2(\omega))S(f_1, f_2)(\omega) d\mu(\omega) \right| \le v(S) \cdot \frac{1}{2} \left| \int_{\Omega} (g_1(\omega), g_2(\omega))S(f_1, f_2)(\omega) d\mu(\omega) \right| \le v(S) \cdot \frac{1}{2} \left| \int_{\Omega} (g_1(\omega), g_2(\omega))S(f_1, f_2)(\omega) d\mu(\omega) \right| \le v(S) \cdot \frac{1}{2} \left| \int_{\Omega} (g_1(\omega), g_2(\omega))S(f_1, f_2)(\omega) d\mu(\omega) d\mu$$

This yields $v(T) \leq v(S)$. Consequently $\{v(T): T \in S_{l_p^2(X)}\} \subset \{v(S): S \in S_{L_p(\mu, X) \oplus_p L_p(\mu, X)}\}$ which yields $n(L_p(\mu, X) \oplus_p L_p(\mu, X)) \leq n(l_p^2(X))$. So

$$n(L_p(\mu, X)) \le n(l_p^2(X))$$

Now, for any integer $m \ge 1$, with the same work as above, we obtain

$$n(L_p(\mu, X)) \le n(l_p^m(X))$$

It follows from Theorem 2.1 that

$$n(L_p(\mu, X)) \leq n(l_p(X))$$
.

If μ is atomic then $L_p(\mu, X)$ is isometric to $L_p(\nu, X) \oplus_p \left[\bigoplus_{i \in I} X \right]_{l_p}$ for a suitable set I and an atomless measure ν . With the help of Remark 2 [9], we also have $n(L_p(\mu, X)) \leq n(l_p(X))$. The reverse inequality $n(L_p(\mu, X)) \geq n(l_p(X))$ follows with the same technique used in [5] for the scalar case.

COROLLARY 2.3 Let (Ω, Σ, μ) be a σ -finite measure space. Then, for every Banach space X and every real number $p, 1 \le p < \infty$

$$n(L_p(\mu, X)) = \lim_m n(l_p^m(X)).$$

3. On the positivity of the numerical index of l_p -space

It was proved that the numerical index of l_p^m , $p \neq 2$, m = 1, 2, ... cannot be equal to 0 this is equivalent to that the numerical radius and the operator norm are equivalent on $B(l_p^m)$, $p \neq 2$ (see Theorem 2.3 [6]). In this section we shall also prove that both norms are equivalent on $B(l_p, l_p^m)$.

THEOREM 3.1 For every real number $p \ge 1, p \ne 2$ and every integer m, the numerical radius is equivalent to the operator norm on $B(l_p, l_p^m)$.

Here l_p is real and l_p^m is identified with its natural embedding in l_p .

Proof Let $T = (t_{ik}) \in B(l_p, l_p^m)$. We first have

$$||T|| \le \left\| \left(\sum_{k=1}^{\infty} |t_{1k}|^q \right)^{1/q}, \dots, \left(\sum_{k=1}^{\infty} |t_{mk}|^q \right)^{1/q} \right\|_p$$

$$\le \left(\sum_{k=1}^{\infty} |t_{1k}|^q \right)^{1/q} + \dots + \left(\sum_{k=1}^{\infty} |t_{mk}|^q \right)^{1/q}.$$

Consider $\{T^j\} \in B(l_p, l_p^m)$ defined by $T^j e_k = T e_k$ for $k \neq j$ and $T^j(e_j) = 0$. Then for $x = \sum_{k=1}^{\infty} x_k e_k \in S_{l_p}$ we have

$$x_{x}^{*}(T^{1}x) = \varepsilon_{1}|x_{1}|^{p-1}\sum_{k=2}^{\infty}t_{2k}x_{k} + \dots + \varepsilon_{m}|x_{m}|^{p-1}\sum_{k=2}^{\infty}t_{mk}x_{k} \quad (\varepsilon_{j} \in \{-1, 1\}).$$

Take $x_1 = \varepsilon_1 2^{-1/p}$ with $\varepsilon_1 \in \{-1, 1\}$ we obtain

$$|x_x^*(T^1 x)| = \left| 2^{-1/q} \left(\sum_{k=2}^{\infty} t_{1k} x_k \right) + \varepsilon_1 \left\{ \varepsilon_2 |x_2|^{p-1} \sum_{k=2}^{\infty} t_{2k} x_k + \dots + \varepsilon_m |x_m|^{p-1} \sum_{k=2}^{\infty} t_{mk} x_k \right\} \right| \le v(T^1)$$

Since ε_1 is arbitrary in $\{-1, 1\}$ then

$$2^{-1/q} \left| \sum_{k=2}^{\infty} t_{1k} x_k \right| + \left| \varepsilon_2 |x_2|^{p-1} \sum_{k=2}^{\infty} t_{2k} x_k + \dots + \varepsilon_m |x_m|^{p-1} \sum_{k=2}^{\infty} t_{mk} x_k \right| \le v(T^1).$$

And in particular

$$2^{-1/q} \left| \sum_{k=2}^{\infty} t_{1k} x_k \right| \le v(T^{\mathsf{l}})$$

for all $(x_2, \ldots, x_m, \ldots) \in l_p$ such that

$$\sum_{k=2}^{\infty} |x_k|^p = \frac{1}{2}.$$

That is

$$\frac{1}{2} \left| \sum_{k=2}^{\infty} t_{1k} y_k \right| \le v(T^1) \quad \forall (y_2, \dots, y_m, \dots) \in S_{l_p}$$

which yields

$$\frac{1}{2} \Big(\sum_{k \neq 1} |t_{1k}|^q \Big)^{1/q} \le v(T^1).$$

The same work as above shows that

$$\frac{1}{2} \left(\sum_{k \neq j} |t_{jk}|^q \right)^{1/q} \le \nu(T^j) \tag{*}$$

for j = 1, 2, ..., m. Now let $R^{j} = T - T^{j}$ then we have

$$v(T^j) < v(T) + ||R^j||.$$

And following (*) we obtain

$$\left(\sum_{k=1}^{\infty} |t_{jk}|^q\right)^{1/q} \le 2(v(T) + ||R^j||) + |t_{jj}|$$

which yields

$$||T|| \le 2mv(T) + 2\sum_{j=1}^{m} ||R^{j}|| + \sum_{j=1}^{m} |t_{jj}|.$$

Now let $\{T_n\}$ be a v-Cauchy sequence in $B(l_p, l_p^m)$. Since $v(T_n P_m) = v(P_m T_n P_m) \le v(T_n)$ where P_m is the operator projection on l_p^m (see [5] p. 4), and using the fact that in finite dimensional space l_p^m both norms are equivalent, then each $R_n^j = T_n - T_n^j$ converges in operator norm to some R^j . Therefore $\{T_n\}$ is $\|\|$ -Cauchy. This completes the proof of the Theorem 3.1.

It is still unknown if the numerical radius and the operator norm are equivalent on the Banach space $B(l_p)$, $p \neq 2$ which gives a complete answer to the question of C. Finet and D. Li.

References

- [1] Bonsall, F.F. and Duncan, J., 1971, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, London Math. Soc. Lecture Note Ser. 2 (Cambridge: Cambridge University Press).
- [2] Bonsall, F.F. and Duncan, J., 1973, *Numerical Ranges II*, London Math. Soc. Lecture Note Ser. 10 (Cambridge: Cambridge University Press).
- [3] Finet, C., Martín, M. and Payá, R., 2003, Numerical index and renorming. Proceedings of American Mathematical Society, 131(3), 871–877.
- [4] Duncan, J., McGregor, C.M., Pryce, J.D. and White, A.J., 1970, The numerical index of a normed space. *Journal of London Mathematical Society, Second Series*, 2, 481–488.
- [5] Ed-dari, E., 2006, On the numerical index of Banach spaces. *Linear Algebra and its Applications*, 403, 86–96.
- [6] Ed-dari, E. and Khamsi, M.A., 2006, The numerical index of the L_p -space. Proceedings of American Mathematical Society, 34, 2019–2025.
- [7] Lumer, G., 1961, Semi-inner-product spaces. *Transactions of the American Mathematical Society*, **100**, 29–43.
- [8] López, G., Martín, M. and Payá, R., 2000, Real Banach spaces with numerical index 1. *The Bulletin of the London Mathematical Society*, 31, 207–212.
- [9] Martín, M. and Payá, R., 2000, Numerical index of vector-valued function spaces. Studia Mathematica, 142, 269–280.
- [10] Martín, M., 2000, A survey on the numerical index of Banach space. Extracta Mathematicae, 15, 265–276.

Copyright of Linear & Multilinear Algebra is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listsery without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.

Copyright of Linear & Multilinear Algebra is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listsery without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.